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ABSTRACT

A separable superreflexive Banach space X is constructed such that the
Banach algebra L(X) of all continuous endomorphisms of X admits a
continuous homomorphism onto the Banach algebra C(BSN) of all scalar
valued functions on the Stone-Cech compactification of the positive integers
with supremum norm. In particular: (i) the cardinality of the set of all linear
multiplicative functionals on L(X) is equal to 2° and (ii) X is not isomorphic
to any finite Cartesian power of any Banach space.

1. Introduction

The first results showing the existence of a nontrivial linear multiplicative
functional acting on the Banach algebra L(X) of all continuous linear endo-
morphisms of some space X were obtained by B. S. Mityagin and I. C.
Edelstein in [10]. Namely, they proved the existence of such a functional acting
on the Banach algebra L(J), where J is the well known space constructed by
R. C. James in [5] and on the Banach algebra L(C(T',,)), where C(I,,) is the
space of all continuous scalar valued functions on the set of ordinals not
exceeding the first uncountable ordinal with its usual order topology, equipped
with the supremum norm (cf. [12]). A generalization of this result was given by
A. Wilansky in [18]. Recently, another construction of a Banach space X with
L(X) admitting a nontrivial linear multiplicative functional was given by
S. Shelah and J. Steprans [13]. No examples of that kind were known with the
underlying Banach space being reflexive. A very simple and well known
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argument yields that the existence of a nontrivial linear multiplicative func-
tional on the Banach algebra of all continuous endomorphisms of a Banach
space X implies that X is not isomorphic to any finite Cartesian power of any
Banach space (cf. Remark 6.4). Some examples of superreflexive Banach
spaces not isomorphic to their Cartesian squares have been known, [2], while
an example of a real superreflexive Banach space not isomorphic to the
Cartesian square of any Banach space was constructed in [15]. The problem of
constructing a complex variant of the example above and the existence of a
superreflexive Banach space not isomorphic to any finite Cartesian power of
any Banach space were still open (cf. [15], Problems 7.4 and 7.6).

It seems that the main obstacle in constructing a nontrivial linear multiplica-
tive functional on a Banach algebra L(.X) lies in the fact that L(X) is “strongly
noncommutative”. Let us mention, by the way, that no examples were known
with L(X) admitting more than one such functional. The problem discussed
here motivates the following natural generalizations:

PrOBLEM A. Does there exist a Banach space X with L(X) admitting a
Banach algebra continuous homomorphism onto a “relatively large” commu-
tative Banach algebra 4.

Note that the results of [10] and [18] imply the existence of such a
homomorphism for some Banach spaces onto a one-dimensional Banach
algebra.

ProsLEM B. The same as in Problem A but with X being reflexive or even
superreflexive.

The aim of this note is to prove the following

THEOREM 1.1. There exists a separable superreflexive Banach space Y with
the properties:
(i) Y has a finite dimensional decomposition,
(ii) L(Y) admits a continuous homomorphism onto the Banach algebra
C(BN),
(iii) for every t ER there is a projection P, € L(Y) and a linear multiplicative
functional ¢, on L(Y) such that for every t,, ,ER

1 fort, =t
0 otherwise,

9, (P lz) = {

where C(BN) denotes the Banach algebra of all continuous scalar valued
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functions on the Stone-Cech compactification of positive integers equipped with
supremum norm.

Note that Theorem 1.1 solves Problem B with # = C(8N), and thus yields
the solutions to Problems 7.4 and 7.6 from [15], while the properties (i) and
(iii) ensure that L(Y) is not “too small”.

The construction of the space satisfying Theorem 1.1 is done in two steps.
First we prove the existence of finite dimesional Banach spaces with some
strange properties (Proposition 3.2). This is a generalization of a result from
[9] (Proposition 2.1 below). We would like to stress that the underlying
argument here is based on the technique of “random finite dimensional
Banach spaces” introduced by E. D. Gluskin in [3] and developed in various
contexts by several authors ([1], [4], [7]-[9], [14]-[16]). In the second step we
apply the procedure of “glueing together” such spaces presented in [15] and
[16] and finally we use an ultrafilter argument to get Theorem 1.1.

The paper is organised as follows: §2 explains notations and presents known
results. §3 contains the proof of the basic finite dimensional result. In §4 the
construction of a space satisfying Theorem 1.1 is given. §5 is devoted to the
proof of Theorem 1.1 and the last section contains concluding remarks and
corollaries.

2. Preliminaries and known results

Our notation and terminology is standard. To fix the notation we shall

consider real Banach spaces only. However, exactly the same argument yields
all the results of this paper in the complex case except Corollary 6.3. We shall
consider R” equipped with different norms. If x = (x;, x5, . .., x,) ER" then
| x 1, =M 1x1P)"" for pE[1, o) and [ =(R", | ||,)- If X is a Banach
space, then by L(X) we shall denote the algebra of all continuous operators
acting on X and || T || x will stand for the norm of 7€ L(X). In particular we
shall write || T ||, for the norm of T'€ L(R") considered as an operator acting
on /2. If X and Y are Banach spaces and T is a continuous linear operator from
X into Y, we shall denote its norm by | 7: X—Y | . Finally, || T || for
TeL(R") will stand for the Hilbert-Schmidt norm of 7. Recall that if
X=R"] |lx)and TEL(R") then

AT, X)=inf (| S : X—~12|| || S;: 7 =X |},

where the infimum is taken over all pairs of operators S;, S, such that T = 5,5,
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and for a pair X, Y of k-dimensional Banach spaces, k €N, the Banach-Mazur
distance

dX,Y)=inf{| T: X—Y| | T ':Y—X]},

where the infimum in taken over all 1-1 linear operators T acting from X
onto Y.

For a linear subspace E C R” by P and voly,,  we shall mean the orthogonal
projection onto E and the usual dim E — dimensional euclidian volume on E,
and B? and B, will stand for the closed unit balls in /2 and X respectively. The
following known “local” result is crucial for the proof of Theorem 1.1 ([9],
Proposition 2.3).

ProposITION 2.1. There is a numerical constant ¢ > 0 such that for every

n = 2 thereis a norm || ||x, on R" such that:
(i) the Banach space X, =(R",|| |lx,) is isometrically isomorphic to a
quotient of 13,,

@) X 2= )x Hx = §x i (S/n | x I2) for every xER?,
(iii) for every TEL(R") there is a A-ER and V;EL(R") and a linear
subspace E; with dim E; = Tn/8 such that
(@ T=ArIdg + V7,
®) JArl =c || T ||x.»
© I Vr|ErlaScl T lxn="

If 4, and #, are Banach algebras, by a homomorphism from 4, into %, we
shall mean a continuous linear and multiplicative map from 4, into 4,. In
particular, if 4, is the field of scalars such a homomorphism will be called a
linear multiplicative functional. By /¥ we shall denote the Banach algebra of
all bounded scalar valued sequences with coordinatewise multiplication and
its standard supremum norm. It is well known that /¥ is isometrically
equivalent to the Banach algebra C(BN) of all scalar valued continuous
functions on the Stone-Cech compactification of N with supremum norm.

Recall that an ultrafilter # on N is said to be a free ultrafilter iff it is not
generated by a single point in N. We shall need the following well known fact

FacT 2.2. There exists a family {N,: ¢t €ER} of infinite “almost disjoint”
subsets of N (i.e. for every ¢, LER, t, # t, the intersection N, N N,, is finite).
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3. Local results

We begin with the following consequence of Proposition 2.1 which seems to
be of independent interest.

PropPoSITION 3.1. There is a numerial constant C = 1 such that for every

n =2 and every p €[1, 2) there is a norm || |ix: on R" satisfying the con-
ditions:
(i) the Banach space X; =(R", | |lx:) is isometrically isomorphic to a
quotient of 1%,,

(i) @n)" "' x 2= X g = W x l, S 0772 | x |, for every xER?,
(iii) there is a subspace E C R*, dim E = n/2 such that

Cn7 =2 x = X llag =0~ I x |l

for every x EE and for every pE(1, 2),

(iv) for every TE L(R") there is a ArER, V:EL(R") and a linear subspace
E, CR* dim E Z Tn/8, such that for every p €[1, 2)
(@) T=A;Idg + V7,
®) 14| SC [T [xs
© N Vr|Erlla=Cr2Y7 || T ||y,

(v) for every T € L(R") there is a linear subspace F;r C R*, dim Fr = Tn/8,
such that for every p €[1, 2)

| T | Fr I, = Cn">~Vop(T, X2).

ProoF. We begin with thecase p = 1. Let || |5, for n = 2, be the norms
satisfying Proposition 2.1. Then the conditions (i), (ii) and (iv) are fulfilled
with the constant c.

To prove (iii) let Q,: /), — X, be the quotient map yielding the isometry
from (i). Thus By = Q,(B3,). Hence By = absolute convex hull {Q,¢:j =

1,2,...,2n}, where {¢;}*=, is the standard unit vector basis in /,. By (ii)
we have
3.1 | Qe =1 forj=1,2,...,2n

and therefore
[vol,(By)/vol,(n~ 2B < (8¢%/m)'”
(see e.g. [15], Remark 3.2). On the other hand, by (ii), we have

BX”l DB,E o} n_l/ZB,%.
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Now, (iii) follows by a standard “volume ratio” argument with some constant
C,>1(cf. [17)).

To prove (v) fix an arbitrary operator TEL(R") and letay =min || T | F
where the minimum is taken over all linear subspaces F C R” with dim F =
7n/8. Assume that ar = 1. This means that there is a linear subspace F C R”
with dim F = n/8 such that

(3.2) | Tx .= || x|l forevery x€F.
Let S,:R*—/2and S, : [2 = R" be such that T = §,S, and
T X)=18S: =0\ 1S:E—=X,|.

Replacing S; and S, by AS, and A7'S, for an appropriate AER we may
assume that there are linear subspaces E,, E, C F with dim E,, dim E, = n/16
such that

(3.3) I Sx .=z )l x|]. foreveryx€E,
and
(3.9 | Six .= | x| forevery x €E,

Since, by (ii), || & |xx=1fori=1,2,..., nwe infer that

(3.5 WS X =Rz WS:h—L|.

Observe that, by (3.3), we have || S, ]| = n/16 and hence

3.6) sup{ || Si&; ll2:i=1,2,...,n}= || Si: L = = V4
Combining (3.5) and (3.6) we get

(3.7 1S : X} =2 = /4.

On the other hand, by (3.2) and (3.4), || S,y |22 | ¥ . for every y ES\(E,).
Thus
1S B=Xa || Z || 2] SUED : (SuED, || 19—~ |

(3.8) 2 | T|E: (B || 1)—X |
2 || T|E: By | 1D=(TEs | Nems) -

Now, since Py, By is equal to the absolute convex hull of vectors Prg, Q,¢;,
j=12,...,2n, each of them, by (3.1), of norm not greater than 1, a well
known argument yields that
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VOlim £, Pre, Bx = VOlyim £, €' Biiim i,
where ¢’ is a numerical constant (cf. e.g. [7]). Obviously by (3.2),

VOlgim g, TBz, | 19 Z VOlaim £, Bim £,
Both volume estimates easily imply that
(3.9) ITIE: Esll 1= TEs |l Newpy) | Zc"n',
where ¢” is a numerical constant. Combining (3.8) and (3.9) we get

N1Sy: =X} || =c”"n'?,
which, together with (3.7), yields that for some numerical constant C, we have
AT, Xa) 2z Cr'n'

To complete the proof of (v), it is enough to observe that, by a standard
compactness argument, a; = 1 implies that there is a linear subspace F,
dim F; = 7n/8, such that || T | Fy ||, = 1. Thus we have

1= | T|Fr 2= Gn"5(T, X}).

The case of an operator T with a; # 1 easily follows from the previous one by a
homogeneity argument, which concludes the proof of the proposition in the
case p = 1.

To prove the proposition for p€(1, 2) define By, = Q,(B5,) for every
PE(1, 2) and every n = 2, where Q, is the same quotient map as in the first
part of the proof, but considered as a map from /£, rather than /], and define

Il llxs, to be the norm on R” with By as the unit ball.

(i) is satisfied by the definition of X2 = (R, || |lx2)-

(i) Since B}, C B, C (2n)!~Y#B}, for p&(l1,2), by (ii) for p=1, we
infer that

Qn(Bi,) C Q,(B%,) C(2n)'~"2Q,(B3,)
(3.10) =(2n)'~VPBy1 C (2n)'~V7B}
for p€(1, 2), which in particular means that
@n)"? =" x I= || x )lxz  for every x ER" and every p E(1, 2).
The inequality

[xllxs= x|, foreveryxER"and everyp€E(l,?2)
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follows from the fact that, by (ii) for p = 1, all the vectors from the standard
unit vector basis in R” are contained in the set {Q,¢;:j=1,2,...,2n}. The
right hand side inequality in (ii) is trivial. Thus (ii) has been proved.

To prove (iii) note that if E satisfies (iii) for p = 1, then for every x EE we
have, by (3.10),

Ix ez @m)P~ | x e 2 QC) 0P~ 2 x|, forp€(L,2),
while, by (ii) for p €]1, 2),
Ix ez = xll,=n" || x |, forevery xER",

which completes the proof of (iii) with the constant 2C;.

To prove (iv) fix an arbitrary T € L(R") and let A5, V- and Er be such that
(iv) for p =1 is satisfied with the constant ¢ from Proposition 2.1.

By (3.10), we have

IT ez N T: X =R, o) 2| ) | 24027 T Iy,
Hence
| Ve lErllaSen™ || T || = 20"V || T |y,

for every p €(1, 2). Thus (iv)(a) and (c) are satisfied with the constant 2¢. To
prove (iv)(b) assume that

[Ar] >@cCi+ )| T |lx»  for some pE(l, 2).
Then, for every x €R", we have
I Vex lxe= (T = ArIdge)x |l xz
>(@CADIT ez = N T le) % lxz
Z4cC || T llez Il X Nlxz-

On the other hand, by (ii) and (iii) for p €[1, 2), we infer that for every
x €EE N E;(note that dim(E N E7) = 3n/8)

I Vex llxz S 02 =2 || Vex |, =022 | Ve | Er |11 X I
S22 Tl I x2S 4cC T laen 2 | x Nlxp S4cCo | T |lxz | x N xzs

a contradiction which completes the proof of (iv}b) with the constant
4CC| + 1.
(v) with the constant 2C, follows easily from (v) for p = 1 and the inequality
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AT, X3) = (2n) ~Yop(T, X2)  for every TEL(R"),

which is an easy consequence of (3.10).
To complete the proof of the proposition it is enough to set

C =4 maX{C, Ch Cz, CC‘ + 1}.
In the sequel we shall need the following “dual” version of Proposition 3.1.

ProposITION 3.2. There is a numerical constant C = 1 such that for every

n=2 and every q€(2, 0] there is a norm || |lys on R* satisfying the
conditions
(i) the Banach space (R", || ||ys) is isometrically isomorphic to a subspace
of i,

(ii) for every TE L(R") there is a 9+ ER, V€ L(R") and a linear subspace
E; CR*, dim E; = 7n/8, such that for every q €(2, o]
@) T=90;Idg + V7,
() 1971 S C I T llys,
© I Ve |Erlla=Cr¥e"2 | T |y,

(iii) for every T € L(R") there is a linear subspace Fr C R", dim F; = 7n/8,
such that for every q €(2, ]

I T | Er [, = Cn¥a— 29T, Y9).

ProoF. For every n = 2 and every ¢ €(2, «] define the norm | ||ys on
R” by
I llve=1 1%  wherel/ig+1/p=1,

where X7 is the space from Proposition 3.1 and the duality is given by the
standard scalar product on R”. Thus (i) is fulfilled. To prove (ii) fix T€L(R")
and define 9; =Ap and V= (V)*, where A and Vp are taken from
Proposition 3.1(iv) for the operator 7*. Obviously (ii)(a) and (b) are satisfied
while (i1)(c) means that at least 77/8 of s-numbers of the operator V; are not
greater than Cn'*~"2|| T ||y, and immediately follows from the fact that the
distributions of s-numbers of V; and V;. are exactly the same and from
Proposition 3.1(iv)(c). Since for every linear operator T € L(R") we have that

(T, Y3)=p(T* X7)  wherel/qg+1/p=1,

the same argument concerning s-numbers yields (iii) and completes the proof
of Proposition 3.2.

REMARK 3.3. It may be worth mentioning that due to the fact that all
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spaces X! for a fixed n = 2 are generated by the same quotient map Q,, every
space Y? is isometrically isomorphic to the same n-dimensional subspace of
R* say E,, equipped with the corresponding norm || ||,. Also, due to the
probabilistic nature of the proof of Proposition 3.1, a “typical” n-dimensional
subspace E, of R* will work.

4, Construction of the space Y

The basic idea of our construction is identical with the constructions in [15]
and [16]. First we define by induction an increasing sequence (n,)Z., of
positive integers and a decreasing sequence of reals (g, )2~ with g > 2 for
k €N in the following way: set n, = g, = 4 and assume that (n,, ..., n,_,) and
(4., . . . , Gx—) have been defined. Define g, to be any number from the interval
(2, g,.—)) satisfying

(*) n?rla <2,
Next define n, to be any positive integer greater than n, _, satisfying
(*%) ne 2V >k,

Finally, we set

4.1) Y=<€B

k=1

Y::)

12

(the direct sum of the spaces Y+ from Proposition 3.2 in the sense of /2).
Define P, to be the natural projection onto the k-th factor, for kK €N. We have
P(Y)=Y . Set X, =ker P, for Kk EN. We shall need the following easy fact
(cf. [15], [16]).

LeMMA 4.1. For every kEN and every linear subspace E of X, with
dim E = n, we have

d(E, léimE)-énlyzl-

PROOF. (A copy of the argument in [15]and [16].) Fix E C X,,dim E < n,.
Then

4.2) Ec(EB P,E) cxk=(€B er)l.
Iz 2

jwk jrk !
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Since, by F. John’s theorem, for every finite dimensional Banach space F we
have d(F, I3, ) < (dim F)"? we infer that, for j <k, we have

(4.3) d(P,E, linpr) = (dim P,E)"? = n/? = n)2,

while, by [6] and (*), for j > k, we have

(4.4) d(P,E, l}mpe) = (dim PE)2~Y% < g~ Vo =2 = )2,

The lemma follows easily from (4.2), (4.3) and (4.4).

5. Proof of Theorem 1.1

Let Y be the space defined in the previous section. Obviously Y'is a separable
and superreflexive space with a finite dimensional decomposition. This com-
pletes the proof of Theorem 1.1(i). To prove Theorem 1.1(ii) we shall need a
few more definitions. For every K €N we define a function

P LR%)—R

by setting for T € L(R™), @.(T) = ¥;, where ¥ is an arbitrary fixed number
satisfying the conditions of Proposition 3.2(ii) for T. Additionally, for the sake
of simplicity, we shall assume that

(5.1 P(Aldgw)=4  forevery AE€ER.
For every k €N define
(5.2) o (T)= p.(P,TP,) for every TEL(Y),

and observe that since || P TP |lyy = || T ||y, by Proposition 3.2(ii) and the
definition of ¢,’s, we have

(5.3) lo(T)| =SC || T|ly forevery TEL(Y)andkEN,

where C is the numerical constant from Proposition 3.2.
Now, for every free ultrafilter % on N define

(5.4) P (T) = 1ig1 o(T) forevery TEL(Y)
and observe that, by (5.3), the limit above exists. In the sequel we shall need the
following

LEMMA 5.1. For every free ultrafilter U on N the function ®y, defined above
is a nontrivial linear multiplicative functional.
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PrOOF. We begin with the multiplicavity of ®,. To this end fix an
arbitrary free ultrafilter  on N and 7, S € L(Y). Assume to the contrary that

Dy (TS) # Do (T)D4 ().
By (5.4), this implies that there is an ¢ > 0 and U €% such that
(5.5) [ @e(T)Pu(S) — 0 (TS) > & forevery ke U.

Now, fix kEU such that k> 10C%~"' || T |ly || S ||y, consider Y as an /[

product of Y and X, and write operators T, S and 7S in matrix form with
operator entries;

(5.6) T— [AT Cr]y'i S = [As Cs]

, TS — [ATS CTS]
Dr Bl Ds B

Drs Brsl’
Since A; = P, TP,, by (5.2) and Proposition 3.2(ii), we infer that

AT = ¢k(T)IdR nk + VAT'
By the same token

(57) AS = ¢k(S)Idnﬂk + VAs and ATS = ¢k(TS)IdRM + VAn'

Multiplying the matrices in (5.6) we get ArAs + C;Ds = Arg, which together
with (5.7) yields

(P(T)Pi(S) — (T S)Idgn
) = — 0TV~ 0u(SWay = Vg, + Vi = CeDs.
Note that (5.5) implies that
(5.9) I (@(TPu(S) — Pl TSN x |2 >€ || x ], for every x ER™.
On the other hand, observe that, by Lemma 4.1,
ACrDg) = || Cr: X~ Yall | Ds: Yo = Xe | d(Ds(Y ), lgimDs(Yﬂ;))
= NTUr IS yni.

Hence, considering CrDj as an operator acting on R™, by Proposition 3.2(iii),
we infer that there is a linear subspace F C R* with dim F = 7n,/8 such that

(5.10) I CrDs | F = Cn® 2 I T Iy IS ly-

Similarly, using now Proposition 3.2(ii), we get that there are linear subspaces
E,,, E, and E, all of dimension at least 7n,/8 such that



Vol. 65, 1989 SUPERREFLEXIVE BANACH SPACE 13

A7 | Eq s Cn™ " | Ty,
(5.11) I 4s | Eq = Cn% " 1S |1y

W Azs | Es 2= Co ™ 1 Tl 1S -
Finally, observe that dim E = 3n,/8, where

E=FNE, NE, NE, NV (E,),

and note that, by the choice of k, using (5.3), (5.10), (5.11) and (*=), for every
X EE we obtain

| (— 0TV — 0u(SWoa, — Vir Vg + Vg — CrDg)x ||
SO Vagx 2 + 1o | Vipx ll2+ || ViVax ||
+ | Vapx 2+ || CrDsx ||
S@ACHT Ny IS hem™ ™ + CUT Iy IS Nyne® " meZ) | % 112
SSCH Ty IS lyn™ " ni2, 1 x |12

ke 1
=—-|x
SR
&
= - x
2Il ll2

which together with (5.9) contradicts (5.8) and completes the proof of the
multiplicativity of ®@,. The proof of the additivity of ®, goes along the same
lines and is much simpler, so we omit it. It remains to see that @4 is a
nontrivial linear multiplicative functional but it follows immediately from
(5.1) and (5.4) that ®,(Idy) = 1, which concludes the proof of the lemma.

PrROOF oF THEOREM 1.1(ii)). Let N, N,,... be a sequence of infinite
disjoint subsets of N and let, for each i EN, #; be a free ultrafilter on N such
that N, E#;. Define a map & : L(Y)— I by the formula

h(T) = (g (T), P (T), .. .) for every TE L(Y).

Since every nontrivial linear multiplicative functional is of norm 1 we infer
that || A(T) ;= = || T ||v for every TEL(Y). On the other hand, it follows
from the lemma above that 4 is a homomorphism. Moreover, & maps L(Y)
onto /¥ . Indeed, let (a;)>, €/F. For every i EN define
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Py((voi=1) = (Indy(K)y)i=,  for every (3= €Y,

where Ind, denotes the characteristic function of the set 4 (i.. Py, is the natural
projection in Y onto a subspace spanned by the coordinates from N;).
Obviously 22, «; Py, €L(Y) and by (5.1) and (5.4) we have

b § are) =@

i=1

The proof of Theorem 1.1(ii) is completed by the remark that the Banach
algebras /% and C(BN) are isometrically equivalent.

PrOOF OF THEOREM 1.1(iii). Let {N,: t ER} be a family of infinite “almost
disjoint” subsets of N. For each ¢t ER let %, be a free ultrafilter on N with
N,€U,. Define Py, for t ER, as above. It easily follows from (5.1), (5.4) and
the basic properties of free ultrafilters that systems {Py:tER} and
{®Dy4, : t ER} satisfy the requirements of Theorem 1.1(iii), which completes the
proof of Theorem 1.1.

6. Remarks

REMARK 6.1. The same argument as above yields that the space Y X 2
satisfies the requirements of Theorem 1.1. (In fact Y =~ Y X /2)

REMARK 6.2. Since the space Y constructed here is “essentially” the same
as the space in [16] one can prove that Y has no basis.

It is easy to see that if X is a complex Banach space then L(X) does not admit
a real linear multiplicative functional. Thus we have

COROLLARY 6.3. (The real case only). The space Y does not admit a
complex structure (cf. [15]).

REMARK 6.4. It is well known that there does not exist a linear multi-
plicative functional on L(R") for every n = 2. It may be worth mentioning
that this implies that the functions ¢, in §5 are not linear multiplicative
functionals despite the fact that their limit is. Observe that if X is a Banach
space and Z is the Cartesian product of n copies of X with n = 2, then thereisa
natural homomorphic embedding 4 of L(R") into L(Z) with A(Idg n) =1d,.
Thus we get
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COROLLARY 6.5. (Solution of Problems 7.4 and 7.6 in[15)). ThespaceY is
not isomorphic to any finite Cartesian power of any Banach space.

Moreover, reasoning along the same lines one can prove

COROLLARY 6.6. (A partial answer to Problem 7.5 in [15]).

(i) For every k EN there does not exist a continuous representation h of the
group O(2k) of all linear isometries of I3, in L(Y) satisfying the con-
ditions:

(a) h(1dg,) = 1dy,

(b) A(T)) + h(T,) =0 for every T\, T,€ O(2k) such that T, + T, =0.
(Note that the condition (b) is equivalent to the condition
h(—1dg)= —1dy.)

(ii) For every k EN there does not exist a continuous representation h of the
group O(2k + 1) satisfying conditions (a) and (b) above and
(©) KI(T)+ h(Ty) + h(T;)=1dy for every T, T,, T,€0Q2k + 1) such
that T, + T, + T, =1dp

2k+1°

Since the cardinality of the set of all linear multiplicative functionals on
C(BN) is equal to the cardinality of SN (= 2°) we get

COROLLARY 6.7. The cardinality of the set of all linear multiplicative
functionals on L(Y) is equal to the cardinality of the set of all continuous linear
Sfunctionals on L(Y) (= 2.

REMARK 6.8. Proposition 3.2 can be viewed as a tiny step towards under-
standing the following well known problem: Does there exist an infinite
dimensional Banach space X with the property that every 7€ L(X) is of the
form 11dy + K with K being a compact (resp. nuclear) operator? In [13] a
construction of a nonseparable space is given on which every continuous linear
operator is a “separable perturbation” of a multiple of the identity operator.

REMARK 6.9. For a Banach space X denote by .#(X) the minimal closed
ideal in L(X) containing all operators of the form .S — ST where T, S € L(X).
Clearly L(X)/.#(X) is a commutative Banach algebra and #(X) = L(X) iff
L(X) does not admit a linear multiplicative functional. Therefore, Problems A
and B can be reformulated to find a (reflexive) Banach space X with “relatively
large” quotient algebra L(X)/.#(X). Thus, by Theorem 1.1(ii) we have

COROLLARY 6.10. The Banach algebra L(Y)/.#(Y) admits a homomor-
phism onto C(BN).
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ReMARK 6.11. In discussions with the author, P. Wojtaszczyk observed
that one can construct a nonreflexive separable Banach space satisfying
conditions (i)-(iii) of Theorem 1.1 using the spaces considered in [11].
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