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ABSTRACT 

A separable superreflexive Banach space X is constructed such that the 
Banach algebra L(X) of all continuous endomorphisms of X admits a 

continuous homomorphism onto the Banach algebra C(pN) of all scalar 
valued functions on the Stone-(~ech compactification of the positive integers 
with supremum norm. In particular: (i) the cardinality of the set of all linear 
multiplicative functionals on L(X) is equal to 2 c and (ii) X is not isomorphic 
to any finite Cartesian power of any Banach space. 

1. Introduction 

The first results showing the existence of  a nontrivial linear multiplicative 

functional acting on the Banach algebra L(X)  of  all continuous linear endo- 

morphisms of  some space X were obtained by B. S. Mityagin and I. C. 

Edelstein in [ 10]. Namely, they proved the existence of  such a functional acting 

on the Banach algebra L (J) ,  where J is the well known space constructed by 

R. C. James in [5] and on the Banach algebra L(C(Fo,,)), where C(F,o,) is the 

space of  all continuous scalar valued functions on the set of  ordinals not 
exceeding the first uncountable ordinal with its usual order topology, equipped 

with the supremum norm (cf. [ 12]). A generalization of  this result was given by 

A. Wilansky in [ 18]. Recently, another construction of  a Banach space X with 

L(X)  admitting a nontrivial linear multiplicative functional was given by 

S. Shelah and J. Steprans [13]. No examples of  that kind were known with the 

underlying Banach space being reflexive. A very simple and well known 
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argument yields that the existence of a nontrivial linear multiplicative func- 
tional on the Banach algebra of all continuous endomorphisms of a Banach 
space X implies that X is not isomorphic to any finite Cartesian power of any 
Banach space (cf. Remark 6.4). Some examples of superreflexive Banach 
spaces not isomorphic to their Cartesian squares have been known, [2], while 
an example of a real superreflexive Banach space not isomorphic to the 
Cartesian square of any Banach space was constructed in [ 15]. The problem of 
constructing a complex variant of the example above and the existence of a 
superreflexive Banach space not isomorphic to any finite Cartesian power of 
any Banach space were still open (cf. [15], Problems 7.4 and 7.6). 

It seems that the main obstacle in constructing a nontrivial linear multiplica- 
tive functional on a Banach algebra L(X) lies in the fact that L(X) is "strongly 
noncommutative' .  Let us mention, by the way, that no examples were known 
with L(X) admitting more than one such functional. The problem discussed 
here motivates the following natural generalizations: 

PROBLEM A. Does there exist a Banach space X with L(X) admitting a 
Banach algebra continuous homomorphism onto a "relatively large" commu- 
tative Banach algebra 8 .  

Note that the results of [10] and [18] imply the existence of such a 
homomorphism for some Banach spaces onto a one-dimensional Banach 
algebra. 

PROBLEM B. The same as in Problem A but with Xbeing reflexive or even 
superreflexive. 

The aim of this note is to prove the following 

THEOREM 1.1. There exists a separable superreflexive Banach space Y with 
the properties: 

(i) Y has a finite dimensional decomposition, 
(ii) L(Y)  admits a continuous homomorphism onto the Banach algebra 

C(#N), 
(iii) for every t E R there is a projection Pt E L(Y)  and a linear multiplicative 

functional ~ot on L(Y)  such that for every 6, t2 ~ R 

{ ; f o r t , = t 2 ,  
~o,, ( Pt2) = otherwise, 

where C(pN) denotes the Banach algebra of  all continuous scalar valued 
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functions on the Stone-Cech compactification of  positive integers equipped with 
supremum norm. 

Note that Theorem 1.1 solves Problem B with ~ = C(flN), and thus yields 
the solutions to Problems 7.4 and 7.6 from [15], while the properties (i) and 
(iii) ensure that L(Y) is not "too small". 

The construction of the space satisfying Theorem 1.1 is done in two steps. 
First we prove the existence of  finite dimesional Banach spaces with some 
strange properties (Proposition 3.2). This is a generalization of  a result from 
[9] (Proposition 2.1 below). We would like to stress that the underlying 
argument here is based on the technique of "random finite dimensional 
Banach spaces" introduced by E. D. Gluskin in [3] and developed in various 
contexts by several authors ([1], [4], [7]-[9], [14]-[16]). In the second step we 
apply the procedure of "glueing together" such spaces presented in [ 15] and 
[ 16] and finally we use an ultrafilter argument to get Theorem 1.1. 

The paper is organised as follows: §2 explains notations and presents known 
results. §3 contains the proof  of the basic finite dimensional result. In §4 the 
construction of a space satisfying Theorem 1.1 is given. §5 is devoted to the 
proof  of Theorem 1. l and the last section contains concluding remarks and 
corollaries. 

2. P r e l i m i n a r i e s  and k n o w n  resul ts  

Our notation and terminology is standard. To fix the notation we shall 
consider real Banach spaces only. However, exactly the same argument yields 
all the results of  this paper in the complex case except Corollary 6.3. We shall 
consider R" equipped with different norms. If  x = (x~, x2 . . . . .  x , )ER" then 
II x II. = (z,~-~ I xi F) ''~ for p E [1, oo) and If = (R", II L).  If  X is a Banach 

space, then by L(X) we shall denote the algebra of  all continuous operators 
acting on X and II T IIx will stand for the norm of T EL(X).  In particular we 
shall write 1[ T II. for the norm of  TEL(R")  considered as an operator acting 
on If .  I f X a n d  Yare Banach spaces and Tis  a continuous linear operator from 

X into Y, we shall denote its norm by II T:  X---  Y II. Finally, II T I1,, for 
TEL(R")  will stand for the Hilbert-Schmidt  norm of T. Recall that if 

x = (R", II IIx) and TEL(R")  then 

)'2(T, X) = inf{ II S." X--- l 2 II II $2" 12 --" X II ), 

where the infimum is taken over all pairs of  operators Sin, $2 such that T = S2SI, 
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and for a pair X, Yof k-dimensional Banach spaces, k E N, the Banach-Mazur 
distance 

d(X, Y ) = i n f {  II T:X~YII  II T - l :  Y~Xll  }, 

where the infimum in taken over all 1-1 linear operators T acting from X 
onto Y. 

For a linear subspace E c R" by PE and voldim e we shall mean the orthogonal 
projection onto E and the usual dim E - -  dimensional euclidian volume on E, 
and Bg and Bx will stand for the closed unit balls in l~ and X respectively. The 
following known "local" result is crucial for the proof of Theorem 1.1 ([9], 
Proposition 2.3). 

PROPOSITION 2.1. There is a numerical constant c > 0 such that for every 

n > 2 there is a norm II IIx, on R" such that: 
(i) the Banach space X, = (R", II IIx.) is isometrically isomorphic to a 

quotient o f  l ~, , 

(ii) II x 115 --< tl x Ux, -<-- II x II1 ( --< ~ II x 119 for every x E R", 
(iii) for every T E L ( R " )  there is a 2 r E R  and FrEL(R")  and a linear 

subspace Er with dim Er >= 7n/8 such that 

(a) T = ;tr Idle + VT, 
(b) I,ZTI ----< c II T IIx,, 
(c) II vT [ E~ 115 --< c II Z IIx, n -  1,2. 

If 81 and 82 are Banach algebras, by a homomorphism from 81 into 82 we 
shall mean a continuous linear and multiplicative map from 81 into 82. In 
particular, if 82 is the field of scalars such a homomorphism will be called a 
linear multiplicative functional. By lff we shall denote the Banach algebra of 
all bounded scalar valued sequences with coordinatewise multiplication and 
its standard supremum norm. It is well known that [ff is isometrically 
equivalent to the Banach algebra C(pN) of all scalar valued continuous 
functions on the Stone-(~ech compactification of N with supremum norm. 

Recall that an ultrafilter q /on  N is said to be a free ultrafilter iff it is not 
generated by a single point in N. We shall need the following well known fact 

FACT 2.2. There exists a family {N, : t ER} of infinite "almost disjoint" 
subsets of N (i.e. for every tl, t2 E R, tl ~ t2 the intersection Nt, ~ Nt2 is finite). 
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3. Local results 

We begin with the following consequence of Proposition 2.1 which seems to 
be of independent interest. 

PROPOSrnON 3.1. There is a numerial constant C > 1 such that for every 

n > 2 and every p ~ [ 1 ,  2) there is a norm I] ]Ix: on R" satisfying the con- 
ditions: 

(i) the Banach space X, p = (R ", II IIx'.) is isometrically isomorphic to a 

quotient o f  l~, , 

(ii) (2n)  1/p-I [1 x N2 -<-- II x [[xg ~ l] x tlo < n l /° - l / l  I[ x ll2for every x ~ R " ,  
(iii) there is a subspace E c R ", dim E > n/2 such that 

C-'n~"-l'Z II x 112 ~ II x IIx,' ~ n '''-''z II x 115 

for every x E E and for every p ~ [1, 2), 
(iv) for every T ~ L (R ") there is a 2r ~ R, Vr E L (R" ) and a linear subspace 

E r c  R ", dim Er > 7n/8, such that for every p ~[1,  2) 
(a) T = 2r Ida. + VT, 

(b) I,t~ I =< c U T Ux:, 
(c) II vT let 115 --< Cn~:Z-I/~ II T IIx:. 

(v) for every T ~ L ( R  ") there is a linear subspace Fr C R ", dim Fr  ->__ 7n/8, 
such that for every p ~ [ 1, 2) 

II T IFT Iiz ~ Cnl'2-~'~2(T, X£). 

PROOF. We begin with the case p = 1. Let [[ ]]x.', for n _>- 2, be the norms 
satisfying Proposition 2.1. Then the conditions (i), (ii) and (iv) are fulfilled 
with the constant c. 

To prove (iii) let Q. :l~. ~ i X. be the quotient map yielding the isometry 
from (i). Thus Bx,. = Q.(B~.). Hence Bx,. = absolute convex hull {Q.ej: j  = 
1, 2 , . . . ,  2n}, where {ej}]~"l is the standard unit vector basis in/,I. .  By (ii) 
we have 

(3.1) l] Q.ej l[2 --< 1 

and therefore 

for j  = 1, 2 . . . . .  2n 

[vol.(Bx.)/vol.(n-l:2B~)] i/. <__ (8e3/lt)l/2 

(see e.g. [15], Remark 3.2). On the other hand, by (ii), we have 

Bx, 2 Bl. D n-"2B2.. 
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Now, (iii) follows by a standard "volume ratio" argument with some constant 

C~ > 1 (cf. [ 171). 

To prove (v) fix an arbitrary operator T E L ( R  n) and let a r  = min II T [ F 112, 
where the minimum is taken over all linear subspaces F C R n with dim F > 
7n/8. Assume that a r  = 1. This means that there is a linear subspace P C R ~ 

with dim P > n/8 such that 

(3.2) II Tx 112>___ IIx 112 for every xE/¢ .  

Let SI" R ~ ~ l~ and $2 : l~ - -  R ~ be such that T --- $2S1 and 

?2( T, X~ ) = II S~ : X~ -" l~ II II S2 :1~ --" x2 II. 

Replacing S~ and $2 by 2S~ and 2-~S~ for an appropriate 2 E R we may 

assume that there are linear subspaces E~, E2 C Fwi th  dim El, dim E2 > n/16 
such that 

(3.3) 

and 

(3.4) 

Since, by (ii), 

(3.5) 

IIS, x 112_- > _ IIx 112 f o r e v e r y x ~ E ~  

IIS, x 112~ IIx 112 for e v e r y x ~ E 2 .  

U ei I1,:: = 1 for i = 1, 2 . . . .  , n we infer that 

• = .12  - ' 1 2  II. II s ,  x2 ---12 II > II s , .  

Observe that, by (3.3), we have II s,  I1~, --> n/16 and hence 

(3.6) sup{ II S~e, 112 "i -- 1, 2 . . . .  , n}  = II S, "1~ ---l~ II >= 1/4. 

Combining (3.5) and (3.6) we get 

(3.7) II s~ :x2 --.l~ II >-- 1/4. 

On the other hand, by (3.2) and (3.4), II & y  112 --> II y 112 for every yES~(EO. 
Thus 

II $2- l~ --- x2 II >-- II & [ S,(E2) : (S~(E2), II 112)-" x2 II 

(3.8) > II T I Ez "(E2, II 112)--'x2 U 

>--II TIE2"(E2,  II [12)--'(TE2, II ll~,~:x.,)ll. 

Now, since Pre~Bx ~. is equal to the absolute convex hull of vectors PrE~Q,,ej, 
j -- I, 2 ..... 2n, each of them, by (3.1), of norm not greater than I, a well 

known argument yields that 
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VOldim E2 Pre2 Bx,. <-_ VOldirn E2 ctBlim E2 

where c' is a numerical constant (cf. e.g. [7]). Obviously by (3.2), 

2 VOldirn E2 TB(e2, II U 2) ~ voldim 62 Bairn E2" 

Both volume estimates easily imply that 

(3.9) IITIE2"(E2,11 119--'(TEz, II I I~ .~ , ) l l> - - c " n  l/z, 

where c" is a numerical constant. Combining (3.8) and (3.9) we get 

II & : / 2  __, x2 II >-- c"n 1/2, 

which, together with (3.7), yields that for some numerical constant C2 we have 

e2(T, X~.) >= Ci-~n 1/2. 

To complete the proof of (v), it is enough to observe that, by a standard 
compactness argument, otr--- 1 implies that there is a linear subspace Fr,  

dim Fr >= 7n/8, such that [[ T[Fr  [12 = 1. Thus we have 

1 = IIT IFr 112 < C2n-t/2y2(T,X~). 

The case of an operator Twith a r  :P 1 easily follows from the previous one by a 

homogeneity argument, which concludes the proof of the proposition in the 

case p = 1. 

To prove the proposition for p E ( 1 , 2 )  define Bx,. = Q,(B¢,) for every 
p ~(1,  2) and every n > 2, where Q. is the same quotient map as in the first 
part of  the proof, but considered as a map from l~, rather than 1~, and define 
[[ []x~. to be the norm on R ~ with Bx: as the unit ball. 

(i) is satisfied by the definition ofX~ = (R ~, ]] I[xt). 
(ii) Since B~, cB~,  c(2n)I-I/pB~, for pE(1 ,2 ) ,  by 

infer that 

Q.(B~.) C Q.(B~.) C (2n)'-I/PQ.(B~.) 

(3.10) = (2n) ~ - ~/PBx,. c (2n) ~ - ~/PB 2 

for p E (1, 2), which in particular means that 

(2n) '/"-' IIx 112- -< IIx IIXe 

The inequality 

II x Ilxx =<- II x I1~ 

(ii) for p = 1, we 

for every x ~ R" and every p ~ (1, 2). 

for every x E R" and every p ~ (1, 2) 
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follows from the fact that, by (ii) for p -- 1, all the vectors from the standard 
unit  vector basis in R ~ are contained in the set {Qnej : j  = 1, 2 . . . . .  2n}. The 
fight hand side inequality in (ii) is trivial. Thus (ii) has been proved. 

To prove (iii) note that i f E  satisfies (iii) for p = l, then for every x E E  we 
have, by (3.10), 

IIx llx,>(2n) ~/'-~ IIx llx'.>(2q)-'n ~''-''2 IIx 112 forp E(I, 2), 

while, by (ii) for p ~ [ I, 2), 

II x IIx,__< IIxL<__n~"-"=llxll2 for every x ER",  

which completes the proof  of (iii) with the constant 2Cz. 
To prove (iv) fix an arbitrary T ~ L ( R  ~) and let 2r, Vr and Er  be such that 

(iv) for p = 1 is satisfied with the constant c from Proposition 2.1. 
By (3.10), we have 

II T llx, > II T: X, ~ --*(R n, (2n) '-~/' II 

Hence 

II~') II >= ½ nl/p-I U T II~'. 

II V~IE~ 112 ~c  n-~:~ IIT II~,' ~ 2cn~a-'/P II T II~t, 

for every p E (1, 2). Thus (iv)(a) and (c) are satisfied with the constant 2c. To 
prove (iv)(b) assume that 

12r I > (4cq + 1) IIT II x: for some p E (1, 2). 

Then, for every x ~ R n, we have 

II Vrx ]Ix#= II ( T -  2r Id~,)x llxt 

> ((4cCi + 1) IIT II~# - IIT lift) II x II~, 

> 4cq IIT Ilx, II x II~,. 

On the other hand, by (ii) and (iii) for p E[1,  2), we infer that for every 
x ~ E  n Er  (note that dim(E n Er)  > 3n/8) 

II v~x IIxt --< n I ' ' -":  II VTx 112 --< n ' ' '- ' '2 II v~ [E~  II~ II x II~ 

_-< 2c II T II~: II x 112 =< 4cC~ IIT Ilxtn ~:2-~:p I[ x llx~ < 4cC1 IIT llx" II x llxt, 

a contradiction which completes the proof  of  (iv)(b) with the constant 

4cCi + 1. 
(v) with the constant 2C2 follows easily from (v) for p = 1 and the inequality 
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~'2(T, X~) -<_ (2n) 1- I/P72(T, X~) for every TEL(R"),  

which is an easy consequence of (3.10). 
To complete the proof of the proposition it is enough to set 

C = 4 max(c, Ct, C2, cCl + 1}. 

In the sequel we shall need the following "dual" version of Proposition 3.1. 

PROPOSITION 3.2. There is a numerical constant C ~ 1 such that for every 

n > 2  and every qE(2, oo] there is a norm [1 [[Yl on R" satisfying the 
conditions 

(i) the Banach space (R", II II y:) is isometrically isomorphic to a subspace 

of It., 
(ii) for every T E L (R") there is a Or ~ R, Vr ~ L(R") and a linear subspace 

Er C R", dim Er -~ 7n/8, such that for every q E(2, ~ ]  
(a) T = 0r IdR. + Vr, 

(b) 10T I --< C II T I1,.,, 
(c) II vT I E~ 112 --< Cn '/q- i/2 II T U ~.'. 

(iii) for every T~L(R")  there is a linear subspace Fr C R", dim FT > 7n/8, 
such that for every q E(2, ~ ]  

II T lET II~ ----< Cnt/q-~/2~'2(T, Yg). 

For every n > 2 and every q~(2,  oo] define the norm II lit: on PROOF. 
R" by 

II II Y.' = II II*¢ where 1/q + 1/p = 1, 

where X~ is the space from Proposition 3.1 and the duality is given by the 
standard scalar product on R". Thus (i) is fulfilled. To prove (ii) fix TEL(R")  
and define Or =;tr.  and Vr = (Vr.)*, where At. and Vr. are taken from 
Proposition 3.1 (iv) for the operator T*. Obviously (ii)(a) and (b) are satisfied 
while (ii)(c) means that at least 7n/8 of s-numbers of the operator Vr are not 
greater than Cn l/q-v2 ]] T l[ r,, and immediately follows from the fact that the 
distributions of s-numbers of Vr and Vr. are exactly the same and from 
Proposition 3. l(iv)(c). Since for every linear operator TEL(R") we have that 

y2(T, Yg) = y2(T*, X~) where 1/q + 1/p = 1, 

the same argument concerning s-numbers yields (iii) and completes the proof 
of Proposition 3.2. 

REMARK 3.3. It may be worth mentioning that due to the fact that all 
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spaces X.  ~ for a fixed n >_- 2 are generated by the same quotient map Q., every 
space Y.q is isometrically isomorphic to the same n-dimensional subspace of 
R 2", say E, ,  equipped with the corresponding norm 1[ [[q. Also, due to the 
probabilistic nature of the proof  of Proposition 3.1, a "typical" n-dimensional 
subspace E, of R 2n will work. 

4. Construction of the space Y 

The basic idea of our construction is identical with the constructions in [ 15] 
and [16]. First we define by induction an increasing sequence (nk)~=l of 
positive integers and a decreasing sequence of reals (qk)~-~ with qk > 2 for 
k E N in the following way: set nl = q~ = 4 and assume that (n~ . . . . .  nk-1) and 
(ql . . . . .  qk- ~) have been defined. Define qk to be any number  from the interval 
(2, qk-~) satisfying 

(:~) n l ~  11/qt .~  2. 

Next define n k to be any positive integer greater than nk- l satisfying 

(**) 

Finally, we set 

n -  112,1 I/2- llq ~ k. k -  I ~ k  t 

oo 

k- l 12 

(the direct sum of the spaces Y,~ from Proposition 3.2 in the sense of  •2). 

Define Pk to be the natural projection onto the k-th factor, for k E N. We have 
Pk(Y) = Yq~. Set Xk ---- ker Pk for k EN.  We shall need the following easy fact 
(cf. [15], [16]). 

LEMMA 4.1. For 

dim E < nk we have 

P R O O F .  

Then 

(4.2) 

every k ~ N  and every linear subspace E o f  Xk with 

d(E,  12ira e)  < "U2 t ~ k -  1 • 

(A copy of the argument in [ 15] and [ 16].) Fix E c Xk, dim E < nk. 
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Since, by F. John's theorem, for every finite dimensional Banach space F we 
have d(F, 2 < l~imr) = (dim F )  1/2 we  infer that, f o r j  < k, we have 

(4.3) d(PjE, /2im ~e ) -< (dim PiE) 1/2 <= ny 2 ~ n~/2_ 1 

while, by [6] and (*), f o r j  > k, we have 

1/2 (4.4) d(PjE, l~imeje) = < (dim PjE)I/E-I/qJ =< "'k'l/2-1/q~+' =< 2 =< "k-l .  

The lemma follows easily from (4.2), (4.3) and (4.4). 

5. Proof of Theorem 1.1 

Let Ybe the space defined in the previous section. Obviously Yis a separable 
and superreflexive space with a finite dimensional decomposition. This com- 
pletes the proof  of Theorem 1.1 (i). To prove Theorem 1.1 (ii) we shall need a 
few more definitions. For every k E N we define a function 

ek" L(Rn~) -" R 

by setting for T E L ( R ~ ) ,  ek(T) ---- Or, where Or is an arbitrary fixed number  
satisfying the conditions of  Proposition 3.200 for T. Additionally, for the sake 
of simplicity, we shall assume that 

(5.1) ek(~ Ida~) = 2 for every ;~ ER.  

For every k ~ N define 

(5.2) ¢k(T) = (ak(PkTPg) for every T E L ( Y ) ,  

and observe that since II PkTPk II ~g --< IIT I] r, by Proposition 3.2(ii) and the 
definition of ~k'S, we have 

(5.3) I~k(T)l c II T for every T ~ L ( Y ) a n d k E N ,  

where C is the numerical constant from Proposition 3.2. 
Now, for every free ultrafilter o//on N define 

(5.4) q ~ ( T )  = lim ~k(T) for every T E L ( Y )  

and observe that, by (5.3), the limit above exists. In the sequel we shall need the 
following 

LEMMA 5.1. For every free ultra filter all on N the function ~ defined above 
is a nontrivial linear multiplicative functional. 
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PROOF. We begin with the multiplicavity of ~ .  To this end fix an 
arbitrary free ultrafilter q / o n  N and T, S E L (Y). Assume to the contrary that 

~P.(TS) ~ ~.(T)~P.(S). 

By (5.4), this implies that there is an e > 0 and UE° / / such  that 

(5.5) I~ok(T)~ok(S)--~ok(TS)I >e  for every k E U. 

Now, fix k E U  such that k >  10CZe -t II T lit U s IIY, consider Y as an 15 
product of Yn~ and Xk and write operators T, S and TS in matrix form with 
operator entries; 

-r 
Dr Br]x~ S =  , TS . ' Ds Bs lDrs Brsl 

Since Ar = PkTPk, by (5.2) and Proposition 3.2(ii), we infer that 

Ar -- ~Ok(T)Idn nk + VA,. 

By the same token 

(5.7) As = ~k(S)Id2,, + VAs and Ars = ~ok(TS)Idn,, + VATs. 

Multiplying the matrices in (5.6) we get ArAs + CrDs = Ars, which together 

with (5.7) yields 

(~ok(T)~ok(S) - ~Ok(TS))IdR., 

(5.8) = - ~Ok(T)VA, -- ~Ok(S)Va, - VATVas + Va, -- CrDs. 

Note that (5.5) implies that 

(5.9) I1 (~k(T)~k(S) -- ~ok(TS))IdR,,x 115 > e II x 112 for every x ~ R  ~k. 

On the other hand, observe that, by Lemma 4.1, 

r2(CrOs) <= II c~ :  x~ --, Y~: U II Os: Y~ --'Xk II d(Os(Y~e~), ~2imDs(Y~)) 

--< II T II Y II S ll,n~,. 

Hence, considering CrDs as an operator acting on R% by Proposition 3.2(iii), 

we infer that there is a linear subspace F C R ~, with dim F > 7n#8 such that 

llq~-- 1/2 1/2 
(5.10) II CrDs [ F 115 =< trek nk-, II T II, II S II ~. 

Similarly, using now Proposition 3.2(ii), we get that there are linear subspaces 

Ear, EA, and EATs all of dimension at least 7nk/8 such that 
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i., I/qt- 112 
IIA~ lEA, 112--< un~ II TIIY, 

,,-,, l l q t -  1/2 
(5.11) IlaslEAsll2~un~ IISII~, 

i ~  l lq  k -  112 IIArslE~,~ll2<=t-nk II T IIY II S I1~. 

Finally, observe that dim E > 3nk/8, where 

E = F  NEAs NEa~ NEA,~ N V~I(E~,), 

and note that, by the choice of k, using (5.3), (5.10), (5.11) and (**), for every 
x E E  we obtain 

I1( - ~k(T)VAs -- ¢k(S)VA~ -- VA~ VAs + VATs -- C r O s ) x  112 

_-< I~k(T)l II V~,x 112+ I~k(S)l II V,,,x II~+ II V,,,V,,,x II 

+ II v~,~x I1~ + II CrDsx 112 

1,~-1,2 ' ,k- l ,  II x 112 <=(4C211ZllYllSiirnk +CiiTiirllSiirn~7~-~,2..~,2 x 

< 5C 2 II Z I1~ II S .1,,,-,,~.~,2 -- , , ,  , ,k-,  II x 112 

k e l  _ < - -  
- 2 k II x 112 

E 
2 II x 112 

which together with (5.9) contradicts (5.8) and completes the proof  of  the 
multiplicativity of  ~ .  The proof  of  the additivity of  ~ ,  goes along the same 
lines and is much simpler, so we omit  it. It remains to see that ~ ,  is a 
nontrivial linear multiplicative functional but  it follows immediately from 
(5. l) and (5.4) that ~ ,  (Idy) = l, which concludes the proof  of  the lemma. 

PROOF OF THEOREM l.l(ii). Let N1, N2 . . . .  be a sequence of  infinite 
disjoint subsets of N and let, for each i ~ N, ~ i  be a free ultrafilter on N such 
that Ni E ~ .  Define a map h:L(Y)-~ lg by the formula 

h(T) -- (~, , (T) ,  ~,~(T) . . . .  ) for every TEL(Y). 

Since every nontrivial linear multiplicative functional is of  norm 1 we infer 

that II h(T) [[t,r < IIr II~ for every TEL(Y). On the other hand, it follows 
from the lemma above that h is a homomorphism.  Moreover, h maps L(Y) 
onto l~. Indeed, let (a,-)P_ i ~ lff. For every i E N define 



14 P. MANKIEWICZ Isr. J. Math. 

PN,((Yk)~-i) = (IndN,(k)Yk)~_i for every (Yk)~-I ~ Y, 

where IndA denotes the characteristic function of  the set A (i.e. P~, is the natural 
projection in Y onto a subspace spanned by the coordinates from Ni). 

Obviously 23=t aiPs ,~L(Y)  and by (5.1) and (5.4) we have 

h ( i~l °tiPN,) = (°ti)~°- , • 

The proof  of  Theorem 1. l(ii) is completed by the remark that the Banach 
algebras lr~ and C(flN) are isometrically equivalent. 

PROOF OF THEOREM 1.1(iii). Let {Nt : t ER} be a family of infinite "almost 
disjoint" subsets of N. For each t E R let ~¢t be a free ultrafilter on N with 
Nt E Ut. Define Ps,, for t ER,  as above. It easily follows from (5.1), (5.4) and 
the basic properties of free ultrafilters that systems { P ~ : t ~ R }  and 
{ ~ ,  : t ~ R} satisfy the requirements of Theorem 1.1 (iii), which completes the 
proof  of Theorem 1.1. 

6. Remarks 

REMARK 6.1. The same argument as above yields that the space Y X 12 

satisfies the requirements of Theorem 1.1. (In fact Y ~-- Y × 12.) 

REMARK 6.2. Since the space Y constructed here is "essentially" the same 
as the space in [ 16] one can prove that Y has no basis. 

It is easy to see that i fXis  a complex Banach space then L(X) does not admit  
a real linear multiplicative functional. Thus we have 

COROLLARY 6.3. (The real case only). The space Y does not admit  a 
complex structure (cf. [ 15]). 

REMARK 6.4. It is well known that there does not exist a linear multi- 
plicative functional on L(R") for every n >= 2. It may be worth mentioning 
that this implies that the functions ~k in §5 are not linear multiplicative 
functionals despite the fact that their limit is. Observe that if X is a Banach 
space and Z is the Cartesian product of n copies o fXwi th  n > 2, then there is a 
natural homomorphic  embedding h of L(R") into L(Z)  with h(Idn n) = Idz. 
Thus we get 



Vol. 65, 1989 SUPERREFLEXIVE BANACH SPACE 15 

COROLLARY 6.5. (Solution of Problems 7.4 and 7.6 in [15]). The space Y is 
not isomorphic to any finite Cartesian power of  any Banach space. 

Moreover, reasoning along the same lines one can prove 

COROLLARY 6.6. (A partial answer to Problem 7.5 in [15]). 
(i) For every k E N there does not exist a continuous representation h of the 

group O(2k) of all linear isometrics of  12, in L(Y)  satisfying the con- 
ditions: 
(a) h (Id /~)  = Idr ,  
(b) h(TO + h(T2) = O for every T~, T2EO(2k) such that T1 + T2 = O. 
(Note that the condition (b) is equivalent to the condition 
h( - Idtg) = - Idr.)  

(ii) For every k E N there does not exist a continuous representation h of  the 
group O(2k + 1) satisfying conditions (a) and (b) above and 
(c) h(Tl) + h(T2) + h(T3) = Ida, for every TI, T2, T3EO(2k + 1) such 
that 7"1 + T2 + T3 = Idt~+,. 

Since the cardinality of the set of all linear multiplicative functionals on 
C(flN) is equal to the cardinality of fiN ( = 2') we get 

COROLLARY 6.7. The cardinality of  the set of  all linear multiplicative 
functionals on L( Y) is equal to the cardinality of  the set of  all continuous linear 
functionals on L(Y)  ( = 2'). 

REMARK 6.8. Proposition 3.2 can be viewed as a tiny step towards under- 
standing the following well known problem: Does there exist an infinite 
dimensional Banach space X with the property that every T E L ( X )  is of the 
form ,~ Idx + K with K being a compact (resp. nuclear) operator? In [13] a 
construction ofa  nonseparable space is given on which every continuous linear 
operator is a "separable perturbation" of a multiple of the identity operator. 

REMARK 6.9. For a Banach space X denote by J I (X)  the minimal  closed 
ideal in L(X) containing all operators of  the form TS - STwhere  T, S EL(X).  
Clearly L(X)I.lC(X) is a commutat ive Banacb algebra and a l l (X)=  L(X) iff 
L (X) does not admit  a linear multiplicative functional. Therefore, Problems A 
and B can be reformulated to find a (reflexive) Banach space X with "relatively 
large" quotient algebra L(X)/dt(X). Thus, by Theorem 1. l(ii) we have 

COROLLARY 6.10. The Banach algebra L(Y)LlC(Y) admits a homomor- 
phism onto C(flN). 
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REMARK 6.1 1. In discussions with the author, P. Wojtaszczyk observed 
that one can construct a nonreflexive separable Banach space satisfying 
conditions (i)-(iii) of Theorem 1.1 using the spaces considered in [ 11]. 
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